Bimolecular recombination reactions: low pressure rates in terms of time-dependent survival probabilities, total J phase space sampling of trajectories, and comparison with RRKM theory.

نویسندگان

  • N Ghaderi
  • R A Marcus
چکیده

We consider the bimolecular formation and redissociation of complexes using classical trajectories and the survival probability distribution function P(E,J,t) of the intermediate complexes at time t as a function of the energy E and total angular momentum quantum number J. The P(E,J,t) and its deviation from single exponential behavior is a main focus of the present set of studies. Together with weak deactivating collisions, the P(E,J,t) and a cumulative reaction probability at the given E and J can also be used to obtain the recombination rate constant k at low pressures of third bodies. Both classical and quantum expressions are given for k in terms of P(E,J,t). The initial conditions for the classical trajectories are sampled for atom-diatom reactions for various (E,J)'s using action-angle variables. A canonical transformation to a total J representation reduces the sampling space by permitting analytic integration over several of the variables. A similar remark applies for the calculation of the density of states of the intermediate complex ρ and for the number of states N* of the transition state as a function of E and J. The present approach complements the usual approach based on the rate of the reverse reaction, unimolecular dissociation, and the equilibrium constant. It provides results not necessarily accessible from the unimolecular studies. The formalism is applied elsewhere to the study of nonstatistical aspects of the recombination and redissociation of the resulting ozone molecules and comparison with RRKM theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bimolecular recombination reactions: K-adiabatic and K-active forms of RRKM theory, nonstatistical aspects, low-pressure rates, and time-dependent survival probabilities with application to ozone. 2.

We consider for bimolecular recombination reactions the K-adiabatic versus the K-active forms of RRKM theory, where K is the component of the total angular momentum along the axis of least moment of inertia of the recombination product. When that product is approximately a prolate symmetric top, with two moments of inertia of the product substantially larger than the third, K becomes a dynamica...

متن کامل

Time-resolved gas-phase kinetic, quantum chemical, and RRKM studies of reactions of silylene with alcohols.

Time-resolved kinetic studies of silylene, SiH(2), generated by laser flash photolysis of 1-silacyclopent-3-ene and phenylsilane, have been carried out to obtain rate constants for its bimolecular reactions with methanol, ethanol, 1-propanol, 1-butanol, and 2-methyl-1-butanol. The reactions were studied in the gas phase over the pressure range 1-100 Torr in SF(6) bath gas, at room temperature. ...

متن کامل

Microcanonical rates, gap times, and phase space dividing surfaces.

The general approach to classical unimolecular reaction rates due to Thiele is revisited in light of recent advances in the phase space formulation of transition state theory for multidimensional systems. Key concepts, such as the phase space dividing surface separating reactants from products, the average gap time, and the volume of phase space associated with reactive trajectories, are both r...

متن کامل

Gas phase kinetic and quantum chemical studies of the reactions of silylene with the methylsilanes. Absolute rate constants, temperature dependences, RRKM modelling and potential energy surfaces.

Time resolved studies of silylene, SiH2, generated by the 193 nm laser flash photolysis of phenylsilane, have been carried out to obtain rate coefficients for its bimolecular reactions with methyl-, dimethyl- and trimethyl-silanes in the gas phase. The reactions were studied over the pressure range 3-100 Torr with SF6 as bath gas and at five temperatures in the range 300-625 K. Only slight pres...

متن کامل

Variational Transition State Theory

Transition state theory (TST) 1 is the most widely used theory for calculating rates of bimolecular eactions occurring in the gas phase and in condensed phases. TST is also incorporated into the widely used RRKM theory for unimolecular reactions. The popularity of TST is largely due to its simplicity and its usefulness for correlating trends in reaction rates in terms of easily interpreted quan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 115 18  شماره 

صفحات  -

تاریخ انتشار 2011